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Details of the recently developed ‘zone technique’ for the absolute measure-

ment of lattice parameter and strain in single-crystal solids and thin films are

presented. The method is based on measuring X-ray rocking curves from a few

equatorial planes within a suitable zone and correcting their peak positions at

once with a single zero offset. In contrast to the comparative method, which

usually requires use of two opposite azimuthal directions, those in the zone

technique can often be completed in only one azimuthal setting. A typical

strained layer in the cubic system can be fully and rapidly characterized with

only three rocking curves. The technique is suitable for routine applications

under typical laboratory conditions, and for high-precision measurements of

nearly perfect crystals in a controlled environment, with a potential parts in

10 million accuracy. This degree of accuracy is a direct consequence of the zero

offset correction procedure, which effectively cancels a large portion of the

misalignment errors in the diffractometer. The use of the (n,�n) geometry

substantially reduces the errors of eccentricity compared to the Bond technique,

and its stronger reflections enable the measurement of small samples about

0.05 mm in length with relative ease. The technique is illustrated with examples,

and its extension to the triple-axis (!–2�) instruments is discussed.

1. Introduction

1.1. Background

The need for accurate determination of unit-cell dimensions

and strains in thin films and epitaxic layers has increased

pronouncedly in recent years. The impetus for this informa-

tion is twofold. From a fundamental standpoint, a thorough

knowledge of these parameters helps to understand better the

nature of atomic bonds in solids. From a technological

standpoint, the information is important in the fabrication of

electronic devices and materials where interrelated par-

ameters such as strain and bandgap must be stringently

controlled. It is desirable, therefore, to have at hand a simple,

rapid and readily available laboratory method for the routine

determination of absolute lattice parameters. The term

‘absolute’ implies that the measurements are performed in a

controlled environment, by relying exclusively on well known

external parameters, such as standard X-ray wavelengths for

use in Bragg’s law.

One such technique, henceforth referred to as the ‘zone

technique’, was recently introduced by the author (Fatemi,

2002). The method enables the simultaneous and rapid

determination of several exact Bragg angles in a given zone. It

resolves the well known difficulty with the zero setting in the

double-crystal diffractometer by providing a single zero-offset

correction for all the measured angles at once. Its simplicity,

along with an accuracy of 5–6 significant figures under typical

laboratory conditions, was demonstrated in the original paper

for a few electronic materials. Its ideal detection limit of better

than 2 parts in 107, however, makes it equally useful for high-

resolution measurements in critical applications. This accu-

racy, as shown below, is a direct consequence of the zero-offset

correction procedure. The zone method contrasts several

previously published high-resolution procedures that involve

either specialized instrumentation (Hart, 1969) or are hard to

extend to different materials or to environments other than

synchrotron sources (Zhang et al., 2003).

The main objective of this work is to demonstrate the

method’s high accuracy and to illustrate further its versatility

and speed with examples. Calculations of strain and compo-

sition are described in detail, taking into account the

dynamical effects of refraction and proximity. The critical

factors in instrumental alignment and their effects on

measurements are examined. The extension of the method to

triple-axis geometries is also discussed

1.2. Historical notes

In a recent work, Gałdecka (1999) gave a detailed review of

X-ray diffraction techniques for lattice-parameter measure-



ments in single crystals. Probably the most familiar among

these is the Bond method (Bond, 1960), introduced more than

four decades ago. Originally introduced on a simple diffract-

ometer with a pinhole collimator, it was based on a clever

concept to eliminate the effects of misalignment as well as the

unknown zero offset. The need for non-dispersive measure-

ments at higher angles later made it necessary to perform

some of the measurements on a double-crystal diffractometer.

Fig. 1 shows the concept, using the double-crystal configura-

tions known as ‘parallel’ (n,�n) and ‘anti-parallel’ (n,þn).

The Bragg angle �B is obtained from the angular separation

� � 2�B between the settings at the two diffraction peaks.

Six years after the introduction of the Bond method, two

nearly simultaneous events highlighted the significance and

the limitations of that method. Baker et al. (1966) introduced a

computerized procedure for the Bond technique on a double-

crystal diffractometer, and Kikuta et al. (1966) documented

the first application of the ‘comparative’ double-crystal tech-

nique for epitaxically grown semiconducting layers. Despite its

difficulty at the time with thin films, however, the Bond

method remained as the ‘umpire’ technique for reference

materials such as high-purity Si.

Similar to the practice in powder diffractometry, the

comparative method assumed prior knowledge of the

substrate lattice parameter as an ‘internal standard’. The

method was adopted on the premise that bulk substrates

should maintain their characteristic properties throughout the

various processing stages. Hence, the two methods together

provided an ‘acceptable’ means of characterizing thin strained

layers. In principle, the Bond method would provide the data

for the substrate and the comparative method would extrapo-

late this information to the unknown layer.

1.3. Comparison of the Bond, the comparative and the zone
techniques

The measurement of thin films and epitaxic layers with the

Bond method on a double-crystal diffractometer required

very high incident intensities. However, enlarging the beam

size for higher intensity only worsened the effects of surface

non-uniformity and warping. The asymmetric reflections

needed for strain were also difficult to handle with the Bond

technique, since they are always measured at unequal

diffraction angles where, unlike the symmetric case, the errors

of misalignment would not be cancelled out. High-resolution

multiple-crystal beam conditioners (Bartels, 1983) with higher-

efficiency X-ray sources were later used to increase the reso-

lution. Higher intensities were also sought with the use of

rotating-anode X-ray generators and X-ray mirrors. The

resolution achievable with X-ray mirrors is somewhat limited,

so that extremely high precision diffractometry is still

performed without the mirrors. Routine measurements of

lattice parameters in thin films by the Bond technique were

initially considered either impractical or cumbersome.

In the comparative method, the uncertainties in the refer-

ence-layer lattice parameters and strain pose their own

problems. While lattice-parameter variations in the substrate

have often been considered negligible in the measurement of

strain, novel multilayer structures demand more exact control

of this parameter. For example, in wafer bonding applications,

the reference layer is generally too thin to be considered as

‘fully relaxed’. Occasionally also the atomic registry between

the bonded layer and the compliant substrate is less than ideal,

so that the effects of rotational strains must be taken into

account. The comparative technique by itself cannot address

these questions satisfactorily.

The zone method circumvents many of these difficulties. For

example, while the Bond technique involves two measure-

ments for each diffraction angle, the zone method uses only

one measurement in the customary ‘rocking-curve’ mode,

which corresponds to the double-crystal (n,�n) or ‘parallel’

geometry. The notation (n,�n) was originally connected with

the fact that both crystals in the diffractometer are set for the

same reflection order, whereas in general any two orders such

as n and m could be used (see x4.1). The term ‘parallel’ refers

to the fact that the diffracting planes of the two crystals may at

some point during the scan become nearly parallel. The term

‘anti-parallel’ was then adopted to convey the other config-

uration of the two crystals for the same reflection.

The rocking-curve mode is not only helpful in determining

the peak positions more accurately, but it also reduces

substantially the errors of eccentricity, which can be quite

serious for bent crystals. The use of a bright point source and a

single-tube collimator on the double-crystal diffractometer

ahead of the first crystal permits rocking-curve measurements

from extremely small areas only a few tens of mm wide.

Moreover, while typical measurements in the comparative

technique require two opposite azimuthal orientations, those
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Figure 1
The Bond technique on a double-crystal diffractometer. The incident
beam originating from the first crystal (beam conditioner) arrives at the
sample surface at point O. Position [I] corresponds to the orientation of
the wafer in the parallel geometry. A symmetric reflection such as 004 is
recorded at the crystal angle ! ’ �B with the detector at 2�B. A second
symmetric reflection is recorded in position [II], corresponding to the
anti-parallel geometry at the crystal angle ! ’ � � �B. Dashed arrows to
the right and left denote the diffracted beams in positions [I] and [II],
respectively. Once corrected for refraction, the difference between the
two ! settings is � � 2�B.



in the zone technique can often be completed at a single

azimuthal setting. The zone method is particularly fast for

most cubic crystals, which can often be characterized with only

two or three reflections, depending on the degree of symmetry

in the strain.

2. Characteristic features of the zone technique

2.1. The basic principle

The striking feature of the zone technique is its simplicity: it

provides a means of measuring several absolute Bragg angles

sequentially without the need to realign each plane separately

for the tilt or azimuth. The general procedure is as follows: (i)

orient any suitable crystallographic zone containing two or

more strongly diffracting planes into the equatorial direction

(all single-crystal materials have at least one such zone); (ii)

record the corresponding rocking-curve peak positions; (iii)

adjust the peak positions for refraction and proximity effects,

if any; (iv) calculate the common zero offset for all the peaks

to obtain the ‘exact’ Bragg angles and hence their related d

spacings; (v) finally, use the latter in appropriate equations to

obtain the sought unit-cell dimensions. The only instrumental

requirement is a well aligned diffractometer having a high-

resolution (0.0001�) � circle, reproducible within � 0.0001�.

The same high resolution, however, is not needed for the

detector angle, except that its window must be vertically

restricted, subject to the caveats discussed later.

The procedure described in the following sections is aimed

at the most efficient way to obtain precise lattice parameters in

a laboratory environment for quick turn-around applications.

For these applications, five or six significant figures will be

more than sufficient. As can be readily seen, it is convenient in

most cases to use a pair of asymmetric reflections together

with a single symmetric reflection to completely characterize a

layer. This is not a fast and rigid rule, as any set of three

independent measurements can be used instead, although the

computational process would become more involved. For

improved accuracy, however, the lower diffraction angles

should be avoided as much as possible (see below). Aside

from the fact that the shallower angles lead to larger areas

viewed by the beam, the step resolution in the � circle

(�0.0001) can be the limiting factor in determining the final

accuracy. For example, with �B of about 35�, �� ’ 0.0002�

implies a fractional error (�d=d) of about 6.5 � 10�6 in the

lattice parameter, whereas, with �B near 70�, the error is

reduced to 1.1 � 10�6. Of course, since nearly all measure-

ment angles are accessible in this method, the final accuracy

depends almost entirely on the extent of effort and available

time.

Fig. 2 shows a sketch of an equatorial zone with several

member planes perpendicular to the diffractometer table. The

angles among these planes are connected by simple linear

relationships. Thus, if the X-ray beam is set for diffraction

from plane 1, the ! setting for plane 2 is found from a linear

combination of their corresponding Bragg angles and their

interplanar angle �12. It follows that a ‘reading error’ in the

angular setting for any plane would apply equally to all other

planes in the zone. This obvious and trivial property of the

equatorial planes is the basis of the zone technique.

2.2. The basic formulation

Consider two equatorial planes with interplanar spacings d1

and d2, respectively, where d1 refers to the symmetric (surface

plane) reflection and d2 to a pair of asymmetric planes with

equal and opposite angles � �12 with respect to the symmetric

plane. Following the customary rocking-curve procedures, the

crystal is brought into the beam at the approximate zero

setting, the so-called ‘starting position’. Rocking-curve peaks

are then found at three angles !1 (symmetric reflection), !2sh

(shallow or glancing incidence) and !2stp (steep or glancing

exit), respectively. Clearly all recorded angles will then be

offset by an initially unknown value ". We write

� ¼ 2d1 sinð�1 þ "Þ; ð1aÞ

� ¼ 2d2 sinð�2 þ "Þ: ð1bÞ

In these expressions, the Bragg angle for the symmetric plane

is given by �B1 = �1 + " = !1 + " � �!sym, where !1 is roughly

the angle between the crystal surface and the incident ray at

the peak of the rocking curve and ��!sym is the corre-

sponding refraction correction. Similarly, the Bragg angle for

the asymmetric plane is �B2 = �2 + ", where �2 = !2sh + �12 �

�!sh or, equally, �2 = !2stp � �12 � �!stp.

As seen later, the refraction corrections are small enough to

be ignored in the first approximation in order to simplify the

calculations. Thus, equation (1b) could be written in one of

two equivalent forms:
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Figure 2
The principle of the zone technique. A crystallographic zone is oriented
in the equatorial direction. The planes belonging to this zone are parallel
to the rotation axis and perpendicular to the diffractometer table. The
angle �12 between any two planes, e.g. 1 and 2, is equal to the difference
between the angles �1 and �2 between the incident beam and the two
planes.



� ¼ 2d2 sinð!2sh þ �12 þ "Þ ð1cÞ

� ¼ 2d2 sinð!2stp � �12 þ "Þ: ð1dÞ

Each measured ! would then be adjusted by its own refraction

correction (x2.3.1) following the calculation of " (note that the

precise argument in these expressions would have the form

!2sh + �12 + " � �!sh etc.). To solve equations (1a) and (1b),

we need one more independent relationship, e.g. the one

connecting the measured interplanar angle corresponding to

d1 and d2. In the particular case of crystals with cubic and

tetragonal symmetry, one can show that, if d2 < d1,

d2=d1 � k ¼ cos �12; ð2Þ

Relations quite similar to equation (2) can be found for other

structures, such as the hexagonal, at various orientations (see

x3.3.3 below).

If the zero offset " is small compared to �1 and �2, then

" ¼
k sin �2 � sin �1

cos �1 � k cos �2

: ð3Þ

For materials such as (100) Si, a ‘symmetric’ rocking curve,

004, and a pair of asymmetric ones, e.g. 224, will suffice. The

asymmetric peak positions yield two important numbers. One

is their difference !stp � !shl = 2�12, which is independent of

the zero offset, except that each ! must be separately

corrected in advance. The other is the sum !stp + !shl = 2(�B2 +

"), where again each ! is to be corrected for refraction. This

will be illustrated later in the examples. These two quantities

and the symmetric peak �1 + " supply all the needed data to

characterize the layer with the aid of the linear elasticity

theory. The relationships just examined remain valid for

curved diffracting planes, provided that the diffractometer is

aligned properly to eliminate the eccentricity effects as

described later.

The zone method becomes particularly elegant for bulk

crystals having two or more allowed orders of symmetric

reflection. All cubic III–V compounds, hexagonal structures

such as III-N and SiC, as well as (111)-oriented Si and Ge, are

in this group. For these materials, the d spacings of the

symmetric (basal plane) reflections are related to each other

by integer ratios, i.e. k = m=n, where m and n are two different

reflection orders. For cubic crystals in this group, the asym-

metric reflections are not needed, as they are identified with

only a single lattice parameter. However, the procedure

applies also to the fully strained layers, such as GaAlAs layers

on GaAs, where the relationship between the in-plane and

perpendicular lattice parameters is established from linear

elasticity. In the hexagonal structure, by contrast, the ‘a’ and

‘c’ lattice parameters are related through a pre-determined

c=a ratio. The same procedures can also be used for crystals

without the fourfold or mirror symmetry, e.g. strained 3C-SiC

on 4H-SiC, with minor additional considerations (Fatemi et al.,

2004).

2.3. Dynamical effects

2.3.1. Refraction ‘corrections’. Refraction, i.e. the

dynamical deflection of the X-ray beam in the interior of the

crystal towards the surface, is often safely ignored in routine

applications such as rocking-curve simulation and line-

broadening studies. However, it is an essential component of

any absolute method, including Bond’s, for obtaining correct

results. The term ‘correction’ is a misnomer, as the effect is not

an error but merely a well defined adjustment to otherwise

accurately measured crystal angles for use with Bragg’s law.

The adjustments have well known values and are universally

invariant for any given material and wavelength. Hence, they

can be placed in a ‘look-up’ table and referred to as needed.

The atomic scattering factors used in their calculation are

available from a number of sources (Cullity, 1987; Maslen et

al., 1999; Rupp,1 World Wide Web). Furthermore, they are an

inherent component of any correctly composed dynamical

simulation algorithm, where they can be recorded directly as

the displacement between the diffraction peak and the ‘zero’

coordinate of the simulation plot.

Each measured angle ! must first be corrected for refrac-

tion by subtracting from it the quantity �! defined by (James,

1963)

!B ¼ !m ��! ð4Þ

�! ¼ �nðtan �B þ cot!BÞ; ð5Þ

where !B is the offset-corrected incidence angle at the Bragg

condition, !m is the measured angle and �B is the Bragg angle.

The deviation �n from unity of the index of refraction is

defined by

�n � 1� n ¼
�2e2

2�Vmc2
Fhkl ¼ 1:06� 10�5 Fhkl

V
: ð6Þ

In this expression, the unit-cell volume V, the X-ray wave-

length � (here Cu K�1 radiation) and the classical electron

radius e2=mc2 are in Å-based units, and Fhkl is the unit-cell

structure factor for the particular reflection. Note that in order

to use equations (1a) and (1b) the angle !B must first be

converted to a ‘�’ angle as remarked earlier.

It is instructive to examine equation (5) in some detail. The

expression connects an unknown quantity �! to two variables

!B and �B, both of which depend on the same unknown �!:

the first through equation (4), the second through !B after

adjusting for the vicinality of the diffracting planes (see

below). The explicit expression for �! is therefore

�! ¼ �n½tanð!m ��!� �12Þ þ cotð!m ��!Þ�; ð7Þ

where �12 is a general term that represents any combination of

the interplanar and vicinal angles. As with �12, it is either

added to or subtracted from !m. Although this expression

appears rather formidable, its exact solution is not often

necessary, since the effect of �! on the right-hand side is

negligible compared to other terms. For practical purposes,

therefore, one may initially replace the angle !B with !m, and

thus ignore �! terms on the right.

The effect of the vicinal angle on refraction, however, can

be significant, especially in the glancing entrance mode.
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1 Atomic scattering factors at http://www-structure.llnl.gov/xray/comp/
scatfac.htm [site maintained by Bernhard Rupp (br@llnl.gov)].



Assume, for example, that the 224 reflection is measured from

a 3�-miscut Si (100) wafer, such that the equivalent !sh is about

5.75�, rather than the ‘on-axis’ value of about 8.75�. The

second term in equation (7), namely cot(!B), would then

change from �6.5 to 10, increasing the value of �! in turn by

�50%. To prevent very large errors in the refraction term,

therefore, one must avoid low-angle reflections as much as

possible. As the adjustments are mostly in the arc s regime,

their uncertainty should not exceed 5–10%. In the present

case, a miscut angle of 0.5� would change the cotangent term

from 6.5 to 6.9, or ~+6%. If a large miscut is suspected, it

should be determined reasonably well before attempting high-

precision measurements. The methods available for this

purpose range from the customary Laue back-reflection

technique, accurate within�0.25�, to very high precision using

a combination of visible laser optics and X-rays, accurate to

about 1 arc s (Fatemi, 1990).

It should be noted that the numerical hand calculation of

the refraction correction must give nearly identical results to

those available on a properly written dynamical simulation for

the specific crystal being examined.

2.3.2. The proximity effect. In a system containing two

coherent structures with nearly similar d spacings, the two

diffraction peaks move towards each other from the position

predicted by Bragg’s law. Thus, to use Bragg’s law with the

zone technique, the measured angles must first be corrected

for the proximity effect. This dynamical phenomenon has been

established both experimentally and theoretically (Fewster &

Curling, 1987; Wie, 1989). As it is most noticeable for thinner

layers, it has been loosely referred to as the ‘thin-film effect’,

although layers of any thickness with a small angular separa-

tion (few hundred arc s) between them show the same effect.

The most reliable values are found through the dynamical

simulation of rocking curves for layers with assumed thickness

and composition similar to those being measured.

3. Alignment considerations

3.1. Instrumental requirements

Accurate measurement of crystal angles in the zone tech-

nique consists of two steps; one, the mechanical alignment of

the instrument, the other, the alignment of an equatorial zone.

The mechanical alignment requires not only that the rotation,

azimuth, and tilt axes be mutually orthogonal, but also that the

incident beam be centered with these axes at the same point

on the sample surface. Most commercial diffractometers are

factory aligned and need only minor adjustments at the

installation site. These adjustments consist of aligning the

X-ray source with the beam conditioner and the slits following

it, which together help orient the incident beam in a horizontal

direction parallel to the diffractometer table. Specific proce-

dures can also be devised for ‘custom-made’ instruments.

Modern optical tools, such as self-leveling lasers, null-setting

LEDs and high-precision rotation stages can be used to

streamline and simplify the process. Detailed articles by

Thomsen (1973) and Fewster (1985) provide further guidance.

The detector-window configuration is important. In the

zone technique, it is fitted with a narrow horizontal slit to

confine the X-ray beam to the central plane. Its vertical

opening should be no wider than the height of the X-ray

source, while its lateral dimension can be as wide as desired.

This particular configuration helps eliminate nearly all mis-

alignment errors in the diffractometer. These result mostly

from vertical deviations in various segments of the beam from

the source to the detector (see also the discussion on the

triple-axis diffractometer, x4 below). Fig. 3 shows the critical

factors, namely, the slant � of the incident beam as it emerges

from the X-ray source and the vertical tilts �1 and �2 in the first

and second crystals, respectively.

3.2. Sample alignment in the zone technique

The expression ‘sample alignment’ in this work means that a

crystallographic zone is made equatorial so that all its

diffracting planes can be measured without readjusting the

sample tilt or azimuth between the measurements.

The alignment procedure is nearly the same in diffrac-

tometers with different sample holders. Most modern

diffractometers use an Eulerian cradle, in which the tilt

adjustment arm (�) is the ‘primary’ mechanism that carries the

remaining movements of azimuth (	) and translation. With

this holder, the crystal can be brought rapidly into any desired

orientation from a known starting point. However, the vicin-

ality in the sample, irregularities in the mounting surface and

mechanical instabilities in the diffractometer all affect the

starting angle. Hence, a few iterations may be needed to reach

the optimum ‘equatorial’ setting (following section).

Another type of sample holder is the ‘Cartesian’ holder,

designed by the author in a modified double-crystal instru-

ment (Fatemi, 1989). Here, the primary mechanism is the
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Figure 3
Schematic representation of the critical parameters of misalignment on a
double-crystal diffractometer: the incident X-ray beam vertical slant �
and the tilts �1 and �2 corresponding to the beam conditioner and the
second crystal, respectively. The unit vectors e1 and e2 are parallel to the
diffractometer table. The detector window is fitted with a horizontal slit,
whose vertical opening is nearly the same size as the X-ray focal spot. The
combined effect of the three misalignment parameters determines the
location of the incident beam as it arrives at the detector.



azimuth, which supports the movements of tilt and translation.

This arrangement helps to align rapidly the tilt vector of the

symmetric planes with the azimuth axis. The asymmetric

planes can therefore be made equatorial by a simple rotation

of the sample about the azimuth axis. The Cartesian holder is

more efficient for the zone technique and for the measurement

of vicinal angles, while the Eulerian cradle is better suited for

complex movements such as those connected with reciprocal-

space mapping.

3.2.1. Alignment details. Fig. 4 is a schematic representation

of the procedure using the Cartesian holder for aligning the

(110) zone in an Si (100) wafer, as described previously

(Fatemi, 2002). It consists of alternately adjusting the tilt and

azimuth settings for the symmetric and asymmetric planes

within the zone. Similarly, hexagonal structures, e.g. 4H-SiC,

sapphire (Al2O3), GaN etc., can be aligned, each using their

own appropriate asymmetric planes.

After sample alignment, all diffracting planes within the

zone are correctly oriented, and can be measured by the

familiar rocking-curve technique.

3.3. Measurement of homogeneous strain with the zone
technique

An epitaxic layer deposited on a substrate is in general

under some form of strain. For example, an SiGe layer with

xGe = 0.2 and a thickness of 0.25 mm is partially relaxed,

whereas a GaAlAs layer remains fully strained for up to

several mm thickness. In the latter case, a single measurement

of the perpendicular lattice parameter would suffice, since by

definition the in-plane lattice parameter is fully matched to the

substrate, which is measured independently by the same

method also.

The general application of the zone technique begins with

the calculation of the offset angle according to equations

(1)–(3). Next, the unit-cell parameters in the epitaxic layer are

calculated (Fatemi, 2002). Since these dimensions often

correspond to a strained layer, the appropriate crystal model,

e.g. tetragonal structure for strained cubic crystals, is used to

derive the bulk lattice parameters with the aid of the linear

elasticity theory, and hence the composition of the layer using

Vegard’s law. In most cases, it is also possible to derive a

number for the interlayer tilt as the (vector) difference

between the zero offsets for the substrate and the epilayer.

3.3.1. Cubic unit cell under tetragonal distortion: SiGe
layer on Si. If the perpendicular and in-plane lattice param-

eters are denoted as a? and a||, the relaxed (bulk) lattice

parameter ar in the SiGe layer is found from

a? � ar ¼ �2
c12

c11

ðajj � arÞ; ð8Þ

assuming tetragonal distortion (Fatemi & Stahlbush, 1991).

Here, c12 and c11 are the elastic constants for the alloy under

the assumed composition. The epilayer strain s is defined as

the ratio of the change in the in-plane lattice parameter a|| to

the maximum change available to it:

s ¼
ajj � aSi

ar � aSi

; ð9Þ

where aSi and ar denote the bulk lattice parameters of Si and

SiGe, respectively.

The Ge composition xGe is found by applying Vegard’s law

(Dismukes et al., 1964; Fatemi, 1996):
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Figure 4
Exaggerated schematic representation of the sequence of operations
needed to bring a cubic crystal from an arbitrary orientation into a zone-
aligned state. The sample is a (100)-cut Si wafer, whose 110 zone is
inclined relative to the diffractometer table (xy plane). The X-ray beam,
parallel to the xy plane, arrives at the sample from the right. (a) Initial
orientation. The symmetric [001] and the asymmetric [224] plane normals
point to two arbitrary directions in space, with the (001) planes tilted ‘up’,
the (224) planes tilted ‘down’. The [001] axis is made horizontal with the
004 rocking curve, using only the tilt mechanism (angle �). The detector is
placed at the approximate 2�B for Cu K�1 radiation, 69�, and the crystal
angle (!) near 34.56�. Once the peak is found, its intensity and sharpness
(FWHM) are optimized using only the tilt (�). (b) Intermediate
orientation. The asymmetric planes �2224 or 2�224 are aligned sequentially,
with the detector placed at 2� ffi 88� (Cu K�1 radiation), and the crystal
angle ! to the position corresponding to either the shallow reflection
!sh’ 8.75� or the steep !stp’ 79.25�. The diffraction peaks are optimized
by varying the azimuth (	) alone. (c) The wafer in the final zone-aligned
orientation. All planes in the (110) zone can now be measured without
any further refinement in their tilt or azimuth.



xGe ¼
ar � aSi

aGe � aSi

: ð10Þ

If the composition calculated from this expression is different

from the one initially assumed, one could perform iterations of

(8) and (10) until consistent results are obtained.

3.3.2. Strain measurement in the hexagonal system. In the

hexagonal system, when the epilayer and the substrate have

similar symmetries, the strain in the layer can be obtained

from definition (9). This definition, however, cannot be

applied to mixed systems where the two layers have different

orientations, as in the case of a ‘c-plane’ GaAlN layer

deposited on an a-plane sapphire substrate (Fig. 5), since there

is no alignment between equivalent interatomic dimensions

for comparison.

One possible, albeit indirect and arbitrary, way to define the

strain in such systems is through the change in the c=a ratio (or

somewhat more logically, its inverse, a=c) for a given compo-

sition in the strained layer compared to the bulk (unstrained)

material. This implies of course that predetermined values for

the bulk material are indeed available. As of this writing, there

is still some ambiguity regarding standard values for most

hexagonal structures. Presently, the c=a values for GaN and

AlN are 1.6258 and 1.6002, respectively, based on a(GaN) =

3.1893, c(GaN) = 5.1851, a(AlN) = 3.1130 and c(AlN) =

4.9816 Å. If we also assume Vegard’s law to hold strictly, the

bulk (unstrained) lattice parameters for a GaAlN layer

containing 30% AlN become: a(GaAlN) = 3.1664, c(GaAlN) =

5.1241 Å, leading to c=a = 1.6182. The observed ratio for a

strained layer would be different depending on the type and

the crystallographic orientation of the substrate.

To conform to the usual formulation in the cubic system, we

use the inverse of the c=a ratio, namely a=c, since the ‘in-plane’

reference lattice parameter in the basal plane growth is the a

dimension of the unit cell. The strain sHex could then be

defined as

sHex ¼

m � 
r


m � 
s

; ð11Þ

where 
 � a=c, and the subscripts m, r and s denote, respec-

tively, the measured and relaxed (bulk) values of a=c in the

epilayer and its corresponding value in the substrate.

The epilayer alloy composition in the hexagonal system is

derived in a manner similar to the cubic system. In the present

case,

xAl ¼
acð1þ �Þ � �ca1 � ac1

�cða2 � a1Þ þ aðc2 � c1Þ
; ð12Þ

where the subscripts 1 and 2 refer to the known or prede-

termined lattice parameters of the constituents GaN and AlN,

respectively, and � is defined as

� ¼ 2
c12

c11

: ð13Þ

Equation (12) is derived from the general relationship

c� c0

c0

¼ ��
a� a0

a0

� �
; ð14Þ

where the parameters a and c denote the measured lattice

parameters in the layer and the subscript 0 refers to the

corresponding bulk (relaxed) parameters as determined from

linear elasticity theory.

The expressions for interplanar angles and the d spacings in

the hexagonal system (Cullity, 1987) provide ancillary infor-

mation for solving equations (1a) and (1b):

1

d2
hkl

¼
4

3

h2 þ hkþ k2

a2

� �
þ

l2

c2
ð15Þ

cos	 ¼
h1h2 þ k1k2 þ

1
2 ðh1k2 þ k1h2Þ þ

3a2

4c2 l1l2

h2
1 þ k2

1 þ h1k1 þ
3a2

4c2 l2
1

� �
h2

2 þ k2
2 þ h2k2 þ

3a2

4c2 l2
2

� �� �1=2
:

ð16Þ

3.3.3. A numerical example. Consider the growth of a GaN

or similar layer on an a-plane sapphire wafer, with nominal

parameters a0 = 4.7589, c0 = 12.991 Å (Lee & Lagerloff, 1985).

The orientation of the epilayer relative to the substrate is

shown in the combined stereographic projection in Fig. 5. We

see that all the needed measurements can be obtained at a

single azimuth by orienting the wafer such that the substrate’s

c zone (0001) is equatorial. In this case, each layer is char-

acterized with only three rocking curves.

For the GaN epilayer, the symmetric 0004 and the asym-

metric reflections 10�115 and �11015 provide strong, relatively

sharp, rocking curves. The sapphire substrate is measured with

the symmetric 22�440 (a-plane reflection) combined with a pair

of asymmetric reflections from either (22�443)-type planes,

15.35� away from the a axis, or (22�446), i.e. second-order

(11�223)-type planes, at 28.75� away. The (22.3) planes have a

lower Bragg angle but a higher glancing incidence angle !shl’

26.5� (Cu K�1 radiation), compared to the (22.6) planes, !shl’
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Figure 5
Stereographic projection of a basal-plane (0001) GaN, or similar material,
grown on a-plane (11�220) sapphire (Al2O3) substrate, showing reflecting
planes used in the measurements. The ‘main flat’ marks the substrate c
axis, i.e. the zone (0001), oriented in the equatorial direction. Planes of
type (11.3) and (22.3) from the substrate and (10.5) from the epilayer are
aligned, and can thus be measured simultaneously for rocking curves.
Solid circles, marked by suffix s, refer to the substrate; hollow circles,
suffix e, refer to the GaN layer. Note the slight misalignment between the
projections of the (�111:�99) s and (21.0) e etc. planes.



18.6�. As noted in x2.3.1 above and also later below, the higher

glancing angles are generally preferred since they lead to less

uncertainty in the refraction correction.

For the planes of type (22.3) in the a-plane (11�220) Al2O3:

cos ffð22:3; 11�220Þ ¼
2

ð4þ 9a2=4c2Þ1=2
; ð17Þ

1=d2
223 ¼ 16=a2

þ 9=c2
ð18Þ

and

1=d2
22:0 ¼ 16=a2: ð19Þ

From (16)–(18), we can also derive the condition

d2=d1 � k ¼ cos �12; ð20Þ

where d2 = d(22�443) and d1 = d(22�440), and �12 is obtained from

the measurements.

Similarly for (h0 �hhl)-type planes in the c-plane (0001) GaN,

we obtain from equations (15) and (16):

cos� � cos ffð100 �110l; 0001Þ ¼
½34 ða

2=c2Þ�1=2

½1þ 3
4 ða

2=c2Þ�1=2
; ð21Þ

1=d10:5 ¼ 4=3a2 þ 25=c2; ð22Þ

1=d2
0004 ¼ 16=c2

ð23Þ

and, thus,

d2=d1 � k ¼ 4
5 cos �12; ð24Þ

where d2 = d(10�115) and d1 = d(0004). Note the slight difference

in the multiplier on the right-hand sides in equations (20) and

(24)!

We apply these formulas to a system consisting of a 1.0 mm

layer of Mg-doped GaN deposited on an a-plane sapphire

substrate. To eliminate the effect of variations in the sample

surface and warping, a small beam of approximately

0.1 � 0.5 mm in cross section was used, although with care

smaller areas about 0.05 � 0.1 mm have also

been measured (Fatemi, to be published).

Owing to the beam spread, the area covered is

about twice as large, yet well within the

acceptable limits. We expect to see different

lattice parameters for the Mg-doped GaN

compared to the ‘undoped’ sample. To reduce

the uncertainty due to small drifts in peak

positions, each measurement is both preceded

and followed by the rocking curve from a sharp

substrate reflection, in this case the sapphire

22�440 reflection. This practice is helpful in

reducing the measurement errors. For

moderate monotonic drifts, it is possible to

make an adjustment in the ‘unknown’ peak

position by interpolating between the times

corresponding to the reference peaks. The

more ‘random’ variations may indicate

mechanical and thermal instabilities that would

have to be addressed before collecting the data.

As usual with all high-precision measurements, repetition is

essential. We also note that, in order to estimate the peak

positions precisely, each rocking curve need only be measured

– with suitable counting times – in a range of angles just

outside the FWHM.

Table 1 shows the normalized data for the system just

described, using the 004 reflection from an Si(100) beam

conditioner with Cu K�1 radiation. During several hours of

such measurements, only a slight monotonic drift of approxi-

mately 2.5 arc s was detected for the reference (22.0) rocking

curve, and no two consecutive reference peaks differed by

more than 0.3 arc s.

The sapphire and GaN offset angles are each obtained from

their own set of peaks. Laue back-reflection patterns show that

the ‘basal planes’ a and c of sapphire and GaN are nearly

aligned, and that the vicinality is negligible. Hence, the

approximate ‘Bragg’ angles of the asymmetric reflections can

be used for the refraction correction. Solving equation (3),

however, requires independent expressions such as equations

(20) and (24) in each case, similar to equation (2) for the cubic

crystals.

Calculations begin with refraction corrections. From (5) and

(6), we have for sapphire 22.0 reflection

�!ð22:0Þsym ¼ �nðtan 40:1885þ cot 40:1885Þ ¼ 2:028�n

and

�n � 1:06� 10�5
ðFhkl=VÞ;

with fAl = 6.39, fO = 2.77, F440 = 21.09, V = 0.866ca2 = 248 Å3,

leading to �! = 1.828 � 10�6 rad = 1.05 � 10�4�. Similarly,

for (223)shl, fAl = 6.22, fO = 2.66, �!(223)shl = 2.893�n =

1.52 � 10�4�, and �!stp = 2.20�n = 1.1 � 10�4�. We see that all

three angles are to be corrected downwards by nearly equal

amounts, ~0.0001�. Within the practical limits in these

measurements, we may therefore safely ignore this adjust-

ment, since the effect would ultimately be removed by the
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Table 1
X-ray rocking-peak positions for an Mg-doped GaN layer grown on an a-plane (11.0)
sapphire.

All measurements were made under controlled room temperature of 294.6 K in one azimuthal
direction with both GaN and sapphire zones aligned.

Reflection
! (peak) (�)
(measured)

FWHM
(� / arc s)

! (peak) (�)
(corrected)

d spacing
lattice parameter
(Å)

Sapphire (22.0)
symmetric

40.1885 0.0050 / 18 40.3561 d220 = 1.18956
a = 4.75824

Sapphire (22.3)
shallow

26.6555 0.0057 / 20.5 26.8231 d223 = 0.912836
c = 12.98977

Sapphire (22.3)
steep

57.3796 0.0053 / 19.1 57.5472

GaN 0004
symmetric

36.2862 0.1422 / 512 36.4584 d004 = 1.296249
c = 5.18499

GaN (10.5)
shallow

31.7476 0.1405 / 506 31.9137 d105 = 0.970722
a = 3.18648

GaN (10.5)
steep

72.9382 0.1757 / 632 73.1109



zero offset correction. The same considerations apply to the

GaN layer.

To calculate the lattice parameters, we first find from Table 1

�saph(22.3, 11.0) ’ 1
2(57.3796 � 26.6555) = 15.3620�, and

�GaN(10.5, 00.1) ’ 20.5953�. From equation (20), d2=d1 =

0.964271, and hence the zero offset, "saph =

+2.9280 � 10�3 rad = +0.1676�. Similarly for GaN, kGaN =

4=5 cos � = 0.748871 and "GaN = +3.006 � 10�3 rad = +0.1722�.

The small discrepancy of 17 arc s between the two zero offsets

is still considerably larger than the reading error in the GaN

peak positions and may thus be kept in mind as a possible

slight interlayer tilt, subject to further tests.

Using the corrected values of the angles shown in Table 1,

we find for sapphire: a = 4.75823 and c = 12.98977 Å. Similarly

for the Mg-doped GaN, we find c = 5.18499 and a = 3.18648 Å.

Both groups of results are comparable to the values listed

earlier. The c=a ratio for this GaN layer is 1.62718, which

differs from the ‘accepted’ value 1.62578 for the undoped

GaN. One could thus in principle calculate the strain based on

its modified definition in equation (11), provided also that

Vegard’s law holds. While outside the scope of the present

work, both these facts must first be established.

4. Instrumental alignment and resolution issues

4.1. Analysis of misalignment errors

In the original paper (Fatemi, 2002), it was pointed out that

results with accuracies exceeding five significant figures are

easily obtained with reasonable instrumental alignment under

typical laboratory conditions. To better quantify that state-

ment, we now examine the effects of various misalignment

parameters in more detail. We shall see that, although each

individual measurement of the diffraction angle may be

subject to a large misalignment error, the process of zero-

offset calculation eliminates most of these errors, leaving only

a much smaller residue as the final error.

In the double-crystal diffractometer, the deviations �, �1 and

�2 defined in Fig. 3 collectively produce a shift error �c in the

measured (recorded) crystal angle, given by (Thomsen, 1973)

�c ¼ �
�2

2 þ�2

2
tan �n þ

��2

cos �n

; ð25Þ

� ¼ � � 2�1 sin �m: ð26Þ

�c denotes an algebraic correction to each measured angle.

Here �m and �n are the Bragg angles for the first and second

crystals, respectively. We retain the subscripts m and n as used

by Thomsen to avoid confusion with the numerals 1 and 2 in

equations (1a) and (1b).

The expression for �c in equation (25) can easily be

analyzed to determine its largest absolute values. The first

term is a monotonically decreasing function of �2 and �.

Hence, the largest negative shift �c occurs when the second

term is also negative, that is, when � and �2 have opposite

signs. If �2 < 0, then � > 0, and the largest � is found for a

positive beam slant � combined with a negative tilt �1. Simi-

larly, when �2 > 0, � < 0, the latter having its largest magnitude

at the largest negative �. Thus, assuming that each of the

three parameters can attain values within �0.05� from the

ideal (0�) setting, the largest �c would then occur either for

� = 0.05� and �1 = �2 = �0.05� or for � = �0.05�, with �1 = �2 =

+0.05�.

When the diffractometer is nearly, but not yet fully, aligned,

the tilts �1 and �2 are both finite but small (of the order of

�0.1�). However, as long as both these tilts are non-zero, the

‘best’ instrumental alignment is through an interplay among

all three misalignment parameters listed earlier. In such cases,

the sharpest diffraction peaks occur approximately when �1

and �2 have similar values but opposite signs (Fig. 3). On the

other hand, in the well aligned instrument, only the second

crystal tilt �2 has to be adjusted. In this case, the maximum

alignment occurs under condition of minimum tilt �2 (Fatemi,

1989, 1996). In general, therefore, one needs to examine the

relationship among the various misalignment factors in some

detail.

Table 2 lists, for the purpose of illustration only, the

numerical results �c for several combinations of the three

parameters �, �1 and �2, each having values of �0.05�

(~3 arc min), using Si 004 and Si 224 reflections. The algebraic

difference between the shift errors or ‘residue’ is also given in

the last two columns for the ‘3 arc min’ and the ‘1 arc min’

cases, respectively. We see that for each set of parameters

the shift errors for the two reflections have similar

signs and magnitude. Their difference in each case results in a

number significantly smaller than each shift error individually.

It is clear that both �1 and �2 in the original equations

(1a)–(1d) are affected by two unknown errors of similar

magnitude.
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Table 2
Calculation of the peak shifts and their difference (residual) error for the pair of 004 and 224 reflections in Si(100).

In the fourth column, all numbers are rounded to the fifth decimal place, corresponding to the practical resolution expected from the rocking curves. Columns 2 to
4 show the results for an assumed misalignment level of�0.05� in each of the three parameters �, �1 and �2. The last column shows the final results assuming�0.02�

variation in each parameter. In this case, the corrections are small enough to be rounded to the sixth decimal place for use with higher-precision measurements. A
large portion of the contribution to the individual �c errors is purged by the subtraction process, thus greatly reducing the misalignment effect.

�, �1, �2 (�)
�c1, 004
(�)

�c2, 224
(�)

Residue �c2 ��c1

(‘0.05�’) (�)
Residue �c2 ��c1

(‘0.02�’) (�)

þ0.05. þ0.05, þ0.05 �0.00002 �0.00003 �0.00001 �0.000001
þ0.05, �0.05, þ0.05 þ0.00003 þ0.00001 �0.00002 �0.000003
þ0.05, þ0.05, �0.05 �0.00001 �0.00001 �0.00000 �0.000001
þ0.05, �0.05, �0.05 �0.00020 �0.00025 �0.00005 �0.000001



The difference �2c � �1c is thus the only significant quantity

in the calculation of misalignment errors. The expression for

this residue is given by

�c2 � �c1 ¼ �
�2

2 þ�2

2
ðtan �2 � tan �1Þ þ��2ð

1

cos �2

�
1

cos �1

Þ;

ð27Þ

which in the case of an Si (100) wafer with 004 and 224

reflections and Cu K�1 becomes

�c2 � �c1 ¼ �0:227
�2

2 þ�2

2
þ 0:176��2: ð28Þ

The part of the error shared by �1c and �2c is effectively a fixed

unknown adjustment that is removed by the zero-offset

calculation. Thus, the residue shows the disparity between the

reflections due to misalignment. In Table 2, we also see that

reducing �1, �2 and � from 0.05� (3 arc min) to 0.02�

(~1 arc min) reduces the shift errors by nearly sixfold. These

numbers are also obtained within the round-off errors from

equation (28). Note that a 0.02� deviation from the horizontal

is equivalent to a vertical shift of �7 mm in 20 m. Hence, a

laser level can be used to align the pinhole collimator with

relative ease within this tolerance.

4.2. A numerical estimate of the shift error

While the residual error e could be taken as an uncertainty

in one of the two angular measurements, its eventual effect is

on the zero offset ", which changes both �1 and �2. To examine

the effect on �c, we assume that e arises mainly from the

second measurement �2. One could show, however, that the

analysis would not be affected if the residue were shared

between both measurements. The true offset "e can then be

expressed as

"e ¼
� sinð�2 þ eÞ � sin �1

cos �1 � � cosð�2 þ eÞ
ffi "þ

sin �1

tan �2

e; ð29Þ

where the residue e� �, and " is the value defined in (6). We

see that the zero offset is altered by an amount of the same

order as e. Calculating the effect of this adjustment in " on the

measured angles �1 or �2 (004 or 224, respectively), we get

��i ¼ �" cos2 �i; ð30Þ

where �" is defined by the second expression in equation (23).

In the present example, the shift in the measured angle is

about 0.4e. Ignoring the least likely results in the last row of

Table 2, this is of the order of 0.8 � 10�5� for the ‘3 arc min’

deviations, and 1.5 � 10�6� for the ‘1 arc min’ case, both

numbers well outside the digital capabilities on most

diffractometers. The corresponding effects on Si 004 reflection

would be�1.1 � 10�6 and�2 � 10�7 Å, respectively. The one

order-of-magnitude difference here is purely academic, as

most applications do not require this level of precision. The

ideal instrumental accuracy in the method may therefore be

taken, conservatively, as the larger number, 1 � 10�6 Å, which

for Si is equivalent to nearly 2 parts in 107.

The practical precision in the method, however, depends on

a number of factors including the quality of the crystal being

examined, the choices of various reflections used in the

measurements, and the extent of mechanical and thermal

instabilities in the system. The most important among these

are warping and mosaicity. The zone technique emphasizes the

use of small sample area and limiting the measurements to

higher Bragg angles. This practice reduces the effects of

inhomogeneity and warping, but does not by itself eliminate

the uncertainties caused by changes in the penetration depth

caused by mosaicity as a function of angle and wavelength,

especially if only a few rocking curves are used. Similar

problems are of course encountered in the comparative

technique. In order to analyze lattice-parameter variations

with depth or thickness, more elaborate measurements with

various wavelengths and incidence angles would be needed.

For most materials of interest in the electronics area, however,

the effect is found to be negligible, and in the author’s past

experience different zones and reflections in a single system

have yielded nearly identical results, subject to the following

caveat.

The choice of the particular diffracting planes does raise

questions about the consistency of the results, since the

measurements may not always correspond to the same area of

the sample, nor to the same depth of penetration (Fewster,

1985). Similarly, the assumption of a particular symmetry does

not always hold, as for example in the case of electronic grade

Si, which is expected to be fully cubic. This can often be seen in

routine measurements of the 111-type reflections in Si, in

which the 222 reflection is forbidden, but is nevertheless

observed, at times with significant intensity. This suggests that

the specific crystal structure chosen in the zone technique

should be at least partially verified by comparing the lattice

parameters obtained from various combinations of reflections.

4.3. Eccentricity effects in the Bond and the zone techniques

Eccentricity plays an important part in characterizing

crystals of intermediate perfection, particularly when warping

is present. It can occur for any combination of offsets between

the ! axis, the X-ray beam and the crystal surface. Its

contribution, no matter how small it seems, should therefore

be verified accurately. While the probability for physical

offsets is small for factory-aligned instruments, caution is

nevertheless warranted. It is thus worthwhile to compare the

effect for the zone and the Bond methods. Here we consider

only the displacement between the ! axis and the crystal

surface, the distance labeled h in Fig. 6. We assume that the

crystal surface is polished flat, and that it has been aligned

initially parallel to the incident beam by reducing the beam

intensity by one-half. This customary practice has often been

misinterpreted as the main requirement to ‘center’ the crystal

in the beam, whereas in fact it merely aids in establishing an

approximate starting point for the measurements.

In Fig. 6, the three orientations of the wafer denoted by [0],

[I] and [II] correspond to the ‘starting point’, the (n,�n), and

the (n, +n) settings, respectively. Point O marks the base of the
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perpendicular from the ! axis to the sample surface. In the

Bond technique, the crystal would be turned by the angle

between positions [I] and [II]. During this rotation, the crystal

surface remains tangent to the circle of radius h and the beam

strikes the sample at points A and B in orientations [I] and

[II], respectively. In the absence of eccentricity (h = 0), the

beam would be diffracted from the same point on the crystal

surface, whereas, for h 6¼ 0, the distance AB has no effect on

the measurements for atomically flat planes. For curved

planes, however, the actual angle between the two peaks

would no longer be � � 2�B. The discrepancy would depend

on the dimension h, the incidence angle � and the curvature of

the diffracting planes. Ignoring any second-order effects of

displacement due to warping, the distance AB can be written

as

AB ¼ OB �OA �
h

sinð�=2Þ
� h sinð�=2Þ: ð31Þ

To estimate this distance, we assume the single-crystal wafer to

be a (100)-oriented Si wafer, with �B (004) � 34.564� using Cu

K�1 radiation. Let h ffi 0.2 mm, comparable to the apparent

width of a typical X-ray focal spot or, similarly, the thickness of

a typical single-crystal wafer. This yields AB ffi 3h = 0.6 mm.

We also assume that, while the surface is flat, the (001) planes

are curved to a ‘large’ radius Rc = 10 m, concave toward the

rotation axis. At peak diffraction, the angle between the

incident beam and the (001) planes at point B would therefore

be larger than that recorded on the ! scale by the amount

��e ¼ AB=Rc: ð32Þ

In the present case, ��e ’ 6 � 10�5 rad = 0.0034� = 12.4 arc s.

This means that in order to reach the peak diffraction in the

(n, +n) mode the wafer would have to be placed at a smaller

angle, leading in turn to a larger separation of � � 2�B + ��e.

The ‘interpreted’ value of �B for the 004 reflection would then

be too small by 6.2 arc s, corresponding to an error in the

calculated lattice parameter of about 0.00023 Å.

In the zone technique, by contrast, only the shifts in point A

are involved, as the (n, +n) reflections are not used. The

maximum angular ‘error’ occurs between the two asymmetric

224 reflections (!shl = 8.75�, !stp = 79.2�):

�l ¼ h½sinð!st=2Þ � sinð!sh=2Þ� ¼ 0:11 mm: ð33Þ

Using the same numbers as before, the corresponding change

��e due to curvature is now 1.1 � 10�5 rad or 2.26 arc s.

Again, since the Bragg angle is obtained from the average of

two measurements, the maximum error in this case (224

reflection) is 1.13 arc s. This is nearly one-sixth the corre-

sponding error in the Bond technique.

It is clear that for high-precision measurements the beam

must be centered as precisely as possible on the rotation axis.

To perform this alignment, a vertical slit of desired opening is

placed at the sample position and an incident X-ray beam of

similar width is made to pass through the slit, first at ! = 0�,

then at ! = 180� positions. The beam is considered centered if

the same intensity is recorded at both settings without the

need for adjustments. Otherwise, both the sample holder and

the beam conditioner are readjusted until the proper align-

ment is reached.

4.4. Comparison of the zone and the triple-axis techniques

Recently, Fewster & Andrew (1995) introduced a novel

procedure for absolute lattice-parameter measurements on a

triple-axis diffractometer. The method was a significant

improvement over the Bond technique, as it allowed full

characterization of thin films and their substrates. In that

method, each diffracting plane is separately aligned parallel to

the ! axis, and the detector zero setting is also separately

adjusted for each particular 2�B. For a crystal initially oriented

at random, the same diffraction peak can be reached in

various ways. The diffracting plane can often be aligned by

adjusting the tilt alone, by the crystal azimuth alone, or yet

again by any suitable combination of the two movements. For

each reflection, therefore, the ‘true’ 2�B angle is reached with a

separate zero correction. The main advantage of the triple-

axis method lies with the less perfect mosaic crystals of

constant composition (uniform d spacing), which with proper

beam conditioning can produce extremely sharp !–2�
diffraction peaks, whereas in the zone technique such ma-

terials yield rocking curves whose width (FWHM) is sensitive

to the degree of mosaicity and crystalline quality.

Although the general procedure for sample alignment in

the two types of instruments is nearly the same, there exist a

few distinguishing aspects.

A major difference is in the detector window size. In many

triple-axis measurements, the detector window is vertically

extended to capture most of the diffracted intensity from large

sample areas. However, the detector reading can be influenced

by misalignments in both tilt and azimuth, since these would
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Figure 6
Eccentricity effects in the Bond and the zone techniques. Orientations
marked by [0], [I] and [II] in the Bond method correspond to the starting
point, the (n, �n) and the (n, +n) configurations, respectively. The ! axis
passes through the center of the small circle whose radius h is the
‘eccentricity’ between the ! axis and the crystal surface. During the
measurements, the crystal surface remains tangent to this circle, such that
in positions [I] and [II] the beam strikes the surface at points A and B,
respectively. The dimension h and the distance AB affect the
measurements in warped or curved crystals, but not in atomically flat
crystals. In contrast, the narrower range of angles in the zone technique
produces a much smaller error of eccentricity.



redirect the beam to a spot other than the center line. This

change in the beam position could be easily overlooked, since

the detector response is nearly constant in an extended

vertical direction. Yet, as analyzed in a similar fashion else-

where (Fewster & Andrew, 1988), the actual detector reading

will probably not correspond to the correct 2�B. Fig. 7 shows

an exaggerated graphical representation of this effect.

Assume that the incident and diffracted beams are

contained in an inclined plane where the angle between them

is 2�B. The angle measured at the detector position is 2�m, the

vertical ‘projection’ of the angle 2�B onto the horizontal plane.

Depending on the relative orientation of the incident and

diffracted beams, this angle may be smaller than 2�B (Fig. 7a),

larger than 2�B (Fig. 7b), or seldom also equal to it (not

shown). It is clear that these errors are less likely to occur the

smaller the vertical opening in the detector widow. The shorter

window thus increases the sensitivity of sample alignment to

deviations from the correct tilt and azimuth.

Another difference between the two techniques concerns

the angles used in the measurements and their ultimate

resolution. The double-crystal technique employs an ! scale

with a typical step size of 0.0001�, but does not require

extremely precise placement for the detector itself. In

contrast, the detector angle in the !–2� geometry can be set to

a step resolution of twice that number for equal precision.

Finally, eccentricity, which is non-existent for flat crystals in

the double-crystal diffractometer, often remains an issue in

some !–2� techniques especially those requiring measure-

ments from several planes; unless, of course, the beam is

properly aligned and probes only a fixed well centered sample

area. The eccentricity problem also remains in the case of

triple-crystal diffractometers employing (m, +m,�n)

geometry using the Bond technique in the double-crystal

mode, despite the fact that the reflection angles per se can be

accurately determined with the aid of good intensities and

high resolution using four-crystal monochromators (Bartels,

1983).

5. Discussion and conclusions

In this paper, the practical advantages and features of the zone

technique were highlighted and discussed in detail. It was

shown that lattice parameters and strains in single-crystal

layers can be measured easily and rapidly on a double-crystal

diffractometer with only a few rocking curves. The concept of

strain in typical structures was examined. Consistent with the

familiar expression for the strain in the cubic crystals, a slightly

different formulation was introduced for the hexagonal crys-

tals. The practical errors of measurement caused by mis-

alignments were calculated for the zone technique, and an

ideal detection limit of better than �2 parts in 107 was

established for nearly perfect layers. The process credited for

this high accuracy is intrinsic to the zero-offset calculation.

This number of course does not take into account such factors

as the mechanical stability in the system, reproducibility of the

angle settings, sample non-uniformities and temperature

fluctuations.

We note that the use of the zone technique does not vitiate

the need for the comparative approach, which can indeed be

utilized in several helpful ways. One example is in the

measurement of the interlayer tilt, which is handled quite

rapidly by the comparative technique. Knowledge of this angle

helps to simplify the absolute measurement of tilted layers

further, since it allows one to choose the sample orientation

such that the tilt is either minimized or eliminated altogether.

Combining the two techniques is also helpful for very thin

epitaxic films by taking advantage of higher diffracted inten-

sities at lower angles. The low-angle data are not usually

deemed suitable for the zone technique: not only are their

refraction corrections less accurate, but also the wider area of

the sample covered by the beam contributes to errors due to

surface inhomogeneities. Nevertheless, one can at times obtain

satisfactory results with such data: when both layers are

measured at similar angles, they are subject to similar beam

profiles or ‘footprints’. The relative peak separations

measured in the comparative method are also far less sensitive

to instrumental misalignment than each peak in the pair

measured alone.

This would suggest an ‘indirect’ way of characterizing thin

epilayers relative to the substrate, which is first characterized

absolutely with a high-order symmetric and two asymmetric

reflections. Assuming that the 002 reflection is allowed, a

rocking curve is then recorded for both the epilayer and the

substrate in the comparative mode. The two peaks are then

corrected for their interlayer tilt, if any, and for the zero offset

calculated from the high-angle data. Finally, the ‘absolute’ 002

peak is computed for the epilayer by reference to the

substrate, to yield its corresponding lattice parameter.
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Figure 7
The angle measured through a detector with a vertically extended
window may be influenced by the inclination of the incident and
diffracted beams with respect to the diffractometer table. This angle
would only equal 2�B if the beam segments from the X-ray source to the
detector were in the plane of the diffractometer. The measured angle may
be larger or smaller than 2�B as shown in (a) or (b).



Among interesting applications of the zone technique

presently under study are the measurement of GaAlAs layers

grown on GaAs aimed at establishing the precise calibration

constant for Al concentration, the measurements of non-polar

GaN layers on r-plane sapphire, and the tilt and rotation

effects in wafer bonded structures.
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